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The problem of the orbital stability of the pendulum-like oscillations and rotations of a heavy rigid body with one fixed point is 
solved in the Kovalevskaya case. 0 2001 Elsevier Science Ltd. All rights reserved. 

1. FORMULATION OF THE PROBLEM AND THE MAIN RESULT 

Consider the motion of a rigid body about a fixed point 0 in a uniform gravity field. We will refer the 
motion to a fixed system of coordinates OXYZ, the 02 axis of which is directed vertically upwards. We 
connect with the rigid body a system of coordinates Oxyz, formed by the principal axes of inertia of the 
body for the point 0. We denote the moments of inertia of the body about the Ox, Oy and Oz axes by 
A, B and C respectively. Suppose mg is the weight of the body, I is the distance from the centre of gravity 
to the tied point 0, and x1, ye, z* are the coordinates of the centre of gravity in the Oxyz system. In the 
Kovalevskaya case A = B = z* = Without loss generality we can assume x8 = y* = 

We will use Euler angles w, 8, cp as the 

de de 
p=$y, +z~~~(p, q=$y2--pw 

(1.1) 

yl = sin Bsin cp, y2 = sin 8 cos cp, y3 =cos 0 

In (1.1) we have introduced the notation A2 = mgl/C. 
In addition to the three algebraic first integrals, which always exist in the case of the motion of a 

heavy rigid body around a fixed point - the energy integral, the integral of areas and the integral 
r: + r: + Y23 = 1, Eqs (1.1) allow of a fourth algebraic integral (the Kovalevskaya integral) 

(p* - q* - l.*y, )2 + (2pq - h*y,)* = const (1.2) 

In this case Eqs (1.1) are integrable [3]. But since their solution has a quite complex mathematical form, 
it is of interest to investigate special solutions. 

Equations (1.1) have solutions for which w = 0, 0 = 7d2. In this case 

p = q = 0, r = dcpldt, yI = sincp, y2 = coscp, y3 = 0. 

For these solutions the constant area integral (the projection of the kinetic moment of the body onto 
the vertical) is equal to zero, the axis of symmetry of the body Oz is fixed and occupies a horizontal 
position, while the motion of the body around this axis is described by the differential equation of a 
mathematical pendulum. In general, this motion is rotation with an angular velocity of arbitrary value, 
which varies periodically with time, or oscillations of arbitrary amplitude. The purpose of this paper is 
to solve the problem of the orbital stability of these pendulum-like motions of the body. Here we will 
assume that the projection of the kinetic moment onto the vertical is unperturbed, i.e. it is assumed to 
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be equal to zero in the perturbed motion also. The main result of this paper is a proof of the following 
theorem. 

Theorem 1. If the amplitude of plane oscillations of a Kovalevskaya top around the axis of dynamic 
symmetry does not exceed 7r/2, these oscillations are orbitally stable; if the amplitude is greater than 
7c/2, there will be instability. The plane rotations are always unstable. 

2. THE HAMILTION FUNCTION. 
DESCRIPTION OF THE UNPERTURBED MOTION 

Supposep,,,,pa,p,,, are generalized momenta, corresponding to the Euler angles. The angle \~r is a cyclic 
coordinate andp, is the projection of the kinetic moment onto the vertical, which has a constant value. 
By assumption,p,+, = 0. We will put 

cp = 31~12 + 9,. El = 7c/2 + 92, Pq= chp,, P@‘chp2 

and introduce the dimensionless time r = ht. Then, the motion of the rigid body in the Kovalevskaya 
case can be described (whenp, = 0) by canonical equations, specified by the dimensionless Hamiltonian 

H=Hp:-cos9,cos9z+j/p;+GP:tg29z (2.1) 

The Kovalevskaya integral (1.2) can be represented in the form 

[(p~tg2q2-pf)+~cosq,cosq2J~+~[p,p2tgq2-2sinq,cosq2J2=const (2.2) 

The solution in which q2 = pz = 0 corresponds to plane motions of the body, while the variables q1 
and p1 are described by equations with Hamiltonian 

H”’ = x p; - cos q, (2.3) 

These equations have the integral I$” = h = const. When -1 < h < 1 the body executes plane 
oscillations in the neighbourhood of a stable equilibrium position, for which the centre of gravity of 
the body lies on the vertical 02 below the fixed point 0. When h > 1 plane rotations occur: the angles 
cp of rotation of the body about its horizontal axis Oz increases or decreases monotonically with time. 

For the purposes of further investigation of the stability of the plane motions, it is more convenient 
to write Hamiltonian (2.3) in action-angle variables I, w [l]. In the case of oscillations we put 
k, = sin Q/2), where J3 is the oscillation amplitude (0 c p < n). The canonical univalent replacement 
of variables ql, p1 -+ I, w is given by the equalities 

q, = 2arcsin[k, sn(rc.k,)J, p, = 2k, cn(u,k,), u = 2n-‘K(k,)w (2.4) 

Here k, = k,(Z) is a function which is the inverse of the function 

1=8rr-‘[E(k,)-(I-k:)K(k,)l (2.5) 

In (2.4) and (2.5) and below we use the standard notation for elliptic functions and integrals [3]. 
The oscillation frequency is calculated from the formula 

w, = x/(2K(k, )) (2.6) 

In I, w variables the Hamilton function (2.3) takes the form 

H”’ = 2k: - 1 (2.7) 

In the case of rotations we put kf = 2(1 + h)-‘. The variables I, w are introduced by the formulae 

9l = 2am(,c,kZ), p, = 2k;’ dn(u,k2), u = n-‘K(k2)w (2.8) 

Here k2 = k2(Z) is a function which is the inverse of the function 
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I = 47C’QE(k,) (2.9) 

For the rotation frequency we have the expression 

02 = W2W2)) (2.10) 

In 1, w variables Hamilton function (2.3) has the form 

H”’ = 2k;* - 1 (2.11) 

In unperturbed motion we have q2 = p2 = 0, I = IO = const, and the variables q1 andpt , for a specified 
permissible value of IO, are defined by (2.4)-(2.6) in the case of oscillations and by (2.8)-(2.10) in the 
case of rotations. In this case w = oi r + w(0) in the case of oscillations and w = w2z + w(0) in the 
case of rotations. 

We will introduce a perturbation of the action variable rl = I - 1,. The problem of the orbital stability 
of the plane oscillations and rotations of a body is equivalent to the problem of their stability with respect 
to the variables q2, p2 and rl . 

3. INVESTIGATION OF THE LINEARIZED 
EQUATIONS OF PERTURBED MOTION 

From (2.1) and (2.3)-(2.11) 
quadratic in q2,p2, (rl 1”’ 

we obtain the part H2 of the Hamiltonian of the perturbed motion that is 

H, =O’I +xp; +f/j(p; +2cosq,)q; (3.1) 

In (3.1) the quantities o, q1 and p1 correspond to the unperturbed motion and are defined for I = 
IO by formulae (2.6) and (2.4) in the case of oscillations, and by formulae (2.10) and (2.8) in the case 
of rotations. 

In the linearized equations of the perturbed motion rl = cons& and the change in the variables q2 
and p2, if we take w as the independent variables, is described by the equations 

dq? _ ah, dP2 ah, -=_- 
dw ap2 ’ dw as2 

where 

h, =-$p; +(P: +2COS9,)& 

(3.2) 

(3.3) 

The Kovalevskaya integral (2.2) for the equations of perturbed motion can be written using the 
following series in powers of q2, p2 and ri 

K = k2 + k4 + . . . +k, + . . . = const (3.4) 

where k, is the form of the power of n of q2, p2, Ir, ( “2 with coefficients which depend on q1 and pl, 
which correspond to the unperturbed motion. In this case 

k2=(p:cosq, -2)q:-2p,sinq, q2p2-cosq,p~ (35) 

It can be shown by a direct check that k2 is the first integral of linear equations (3.2). 
Suppose X(w) is the matrix of the fundamental solutions of system (3.2), normalized by the condition 

X(0) = E, where E is the second-order identity matrix. The elements+(w) of the matrix X satisfy the 
equations 

dx,j I dx, 

dw=GX2J’ dw ~=-$-Jp:+2cosq,)r,j: j=l,2 (3.6) 

and initial conditions 
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x,,(O) = x**(O) = 1, x,*(O) = X2,(0) = 0 (3.7) 

The right-hand sides of Eqs (3.6) have period. T with respect to w, and, as can be seen from (2.4) 
and (2.8) T = n in the case of oscillations and T = 27r in the case of rotations. In view of the Hamiltonian 
form of system (3.6) we have the following equality for any w 

xi ix22 -x21x12 = 1 (3.8) 

The characteristic equation of the matrix X(T) can be written in the form 

p2-2ap+ 1 =o (3.9) 

where 2a = x,,(T) + x2*(T). If 1~~1 < 1, the roots of Eq. (3.9) are equal in modulus to unity and are 
different. In this case there is stability [4] in the linear approximation. If ]a] > 1, Eq. (3.9) has a root, 
whose modulus is greater than unity and the periodic motion considered is unstable, not only in the 
linear approximation but also within the scope of the complete non-linear equations of the perturbed 
motion [4]. 

By relations (3.2) (3.5) and (3.7) the solutions of Eqs (3.6) for any value of w satisfy the equations 

(Pf COSq, - 2)X:j - 2/+ sin q,X,jX2j - COS qlX:j = Cj = const. j L 1.2 (3.10) 

c, = p;(o)cosq,(o)-2, c2 =-cosq,(O) 

Here sdO> and PI(O) are the values of the functions q1 and pi when w = 0, calculated from (2.4) in 
the case of oscillations and from (2.8) in the case of rotations. Putting w = Tin (3.10) we obtain that 
the following equalities hold 

2(2b* -1)x;,(T)-x;,(T)=2(2b2 - I), 2(2b2 - I)xf2(T) - xz2(T) = -I (3.11) 

where b = k, in the case of oscillations and b = k,’ in the case of rotations. 
From (3.11) and (3.8) we obtain that xii(T) = xz2(T), and, consequently, the value of a in Eq. (3.9) 

satisfies the equality 

a2 = x;~(T) = I+ 2(26 2 2 - I)xlz(T) (3.12) 

By considering the asymptotic form of the solutions of Eqs (3.6) we can obtain that in the case of 
small-amplitude oscillations (kl + 0) we have xi2(w) + (a/2) sin (&w/2), while in the case of rapid 
rotations (kz + 0) we have xi2(w) + 1/2k2 sin (w/2). A numerical analysis showed that xi2(T) is a 
monotonically increasing function (of kl in the case of oscillations and of k2 in the case of rotations). 
Hence the quantityxi2(T) in Eq. (3.12) is always non-zero:,in the case of oscillationsX#) > (v?/2) 
sin (7&/2), while in the case of rotationsxiz(T) > 0. 

Since in the case of rotations the quantity b > 1, it can be immediately seen from (3.12) that 
]a] > 1. Consequently, plane rotations of a Kovalevskaya top around the axis of dynamic symmetry 
are always orbitally unstable. 

Oscillations as a function of their amplitude 0 (i.e. as a function of the maximum deviation of the 
Ox axis of the body, on which the centre of gravity lies, from its stable equilibrium position along the 
vertical) can be orbitally stable or unstable. It can be seen from (3.12) that if p > n/2 (i.e. e/2 < kl < 
I), then ]u] > 1. Hence, oscillations with an amplitude exceeding n/2 are orbitally unstable. If the 
oscillation amplitude does not exceed N2 (i.e. 0 < k, s A/2), then 1 a( s 1 and the linear approximation 
is insufficient to enable us to draw rigorous conclusions regarding their orbital stability. 

4. NON-LINEAR ANALYSIS OF THE STABILITY OF THE 
OSCILLATIONS IN THE CASE WHEN p s n/2 

We will take olr as the independent variable. From (2.4)-(2.7) using the well-known rules for actions 
with elliptic functions and integrals [3], we can obtain the Hamiltonian of the perturbed motion in the 
form of the following series 

(4.1) 
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The quantity h2 is specified by (3.3) in which o = wl, while q1 and pi correspond to unperturbed 
motion. The function H4 is defined by the equations 

(4.2) 

f 
0 

= _ n*W, ) - (1 -k: VW, )I 
32k;(1 -k;)K’(k,) 

, J =4p: -cosq, =14k;cn2u+2k;-I 

f* A$,: +2cosq,)= n 
(l-k:Mk,) 

[I-kiz+2snudnu(cnuznu-snudnu)] 

The quantity u is defined in (2.4) and ki corresponds to the unperturbed motion. The dots in (4.1) 
denote terms of higher powers than five in q2, p2, 1 rl 1 “2. 

Proof of orbital stability when p c 7r/2. When l3 c rr/2 we have 0 < k, < v?/2. By (3.12) the quantity 
u in characteristic equation (3.9) satisfies the inequality ]a] < 1, and consequently, there is stability in 
the linear approximation. The elementsxii(w) of the matrix of the fundamental solutions of system (3.6) 
will be bounded functions. 

Lemma ‘1. If we make the replacement of variables q2, p2 -+ q2, p2 in accordance with the 
formulae 

q* =x,,(w)& +x,*(w)&, P2 =x*,(W)+* +x**(w)h (4.3) 

the Hamiltonian h2 of the converted system (3.2) will be identically equal to zero, and the function (3.5) 
will become 

k2 = 2(2k: - I& - j$ (4.4) 

The first assertion of the lemma follows immediately from the theory of variation of the arbitrary 
constants in systems of Hamilton differential equations [l, Section 1871. In order to show the correctness 
of the second assertion, we note that the quadratic form k2, obtained from (3.5) by making replace- 
ment (4.3), is the integral of the converted system. But since h2 = 0, the coefficients of the form k2 
should be constant quantities. Substituting (4.3) into the right-hand side of (3.5) and putting w = 0, we 
obtain expression (4.4) for 12. 

Suppose S(q2, a, w) is the generating function of canonical univalent transformation (4.3). In the 
equations of the perturbed motion, defined by Hamiltonian (4.1), we make the canonical univalent 
replacement of variables 42, ~2, rl, w + Q, p2, Fl, W, specifying it using the generating function 
?iw + S. Then 

‘I=i,+~=i-~[p:+(p:+2cosq,)q:], w=G 
JW I 

while q2 andpz must be replaced in accordance with formulae (4.3). 
Replacement (4.3), (4.5) cancels the quadratic form with respect to Q, p2 in the Hamiltonian, and 

reduces it to the form 

ii=b +fi&$+... (4.6) 

The function & in (4.6) is obtained from (4.2) if we replace q2, p2 and rl in the latter in accordance 
with formulae (4.3) and (4.5). 

The Kovalevskaya integral (3.4) can then be written in the new variables in the form 

i=k2 +k, +...+in +...=const (4.7) 

where k,, is a form of the power IZ with respect to q2, p2, I PI ( 1’2, and k2 is given by (4.4). 
The problem of the orbital stability of the oscillations of the body is equivalent to the problem of 

their stability with respect to the variables q2, p2, fl. 

To prove the stability when 0 < kl < fi/2 we consider the function V = fi2 + Z?‘. Since fi and R 
are integrals of the equations of the perturbed motion, we have dV/dz = 0. But, in view of the fact that 
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the function (4.4) is negative-definite with respect to the variables Q, p2, the system of equations 
H = 0, I? = 0 for small @,& Pi has only the zero solution Q = p2 = ?i = 0. Hence, the function I/is 
positive-definite with respect &, pz, i-i and, consequently [5], the oscillations of the rigid body with an 
amplitude not exceeding n/2 are orbitally stable. 

The stability for the critical value of the oscillation amplitude (p = 7c/2). When fi = 7r/2 in Hamiltonian 
(4.1) of the perturbed motion and formula (4.2) we have 

(4.8) h2 =&(p:+4cnLq:), u=2K W 

rt 

fo = - 
7r2(2E- K) 

16K3 
, J; =7cn*u, f2 =Z[l+4snudnu(cnuznu-snudnu)] (4.9) 

Here and below the modulus k, of the elliptic functions and integrals is equal to fi/2. 

It turned out that when kl = fi/2 the matrix of the fundamental solutions of system (3.6) can be 
written in explicit form 

x1, = cnu, xl2 = snudnu - cnu F(u) 

x2, = -2snudnu, x22 = cn3u + 2snudnuF(u) 
(4.10) 

2E-K 
F(u)=znu+-u 

2K 

When w = n we have 

X(K) = x,,(rc)=2E-K 

The roots of characteristic equation (3.9) are multiple: p1 = p2 = - 1, while the matrixX(rr) cannot 
be reduced to diagonal form. Hence, within the framework of the linear equations of perturbed motion, 
orbital instability occurs. We will show, however, that in the complete non-linear system of equations 
of perturbed motion the oscillations of a rigid body with amplitude equal to 7c/2 are orbitally stable. To 
prove this we will use the results obtained previously in [6]. To use them the Hamiltonian of the perturbed 
motion (4.1) must be reduced to normal form, from the coefficients of which we can judge the stability 
or instability. 

In accordance with the algorithm from [6] we will first normalize the linear system with Hamiltonian 
(4.8) and the independent variable w. To do this we make the replacements 42, p2 + q;, pi in accordance 
with the formulae 

42 =q,q;+n,*P;. P2 =n21c?;+n22P; 

n,, = CXI , , q2 = cx,,w+c -I x12 

(4.11) 

“21 =cx*1, n22 = cx2,w + c-1x22 (4.12) 

c=[~,~(rr)lx]% =[(2E-K)h# 

The quantities+ in (4.12) are the functionsxij(w) from (4.10). 
Replacement (4.11) is univalent and canonical and has a period 2n with respect to w. The Hamiltonian 

hi = -gp;’ corresponds to the converted linear equations (3.2). 
Supplementing Eqs (4.11) with the further two relations 

1 
5 =‘I*-~P;Z-~[(“2,4;+n~~P;)*+4cn’u(nllq;+n,~p;)~l. w = w* (4.13) 

we obtain the canonical univalent transformation q2, p2, rl, w -+ q;, pi, r;, w* with respect to all four 
phase variables. 
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In the new variables, the Hamiltonian of the perturbed motion takes the form 

(4.14) 

Hamiltonian (4.14) has a period of 27r with respect to w. By the previous discussion in [6], when 
solving ther stability problem, of the coefficients of the fourth-degree form H4 with respect to 
s;, Pi9 Ir; I4 as a rule it is sufficient to know only the coefficient g40 for qi4. We obtain the following 
expression for it from relations (4.1) and (4.8)-(4.13) 

g40 = W- K)* 
121t3 

{7Kcn6u-6(2E-K)(sn2udn2u+cn’u)2- 

-12K[l+4snudnu(cnuznu-snudnu)](sn* [Id”* u+cn4 u>cn* u) (4.15) 

Using the canonical replacement of variables q;,p;, r;, w + cl, q2, IJ,, & in Hamiltonian (4.14), we 
can normalize the fourth-degree terms [6], and it takes the form _ 

ti where we have denoted the set of terms higher than the fifth power in c2, n2, ]nt ) , which are 
2n-periodic in &, by Oh. The coefficients hji are constant quantities, and h40 = (g40), where (g40) is the 
average value of the function (4.15) during its period 27~ with respect to w. 

The periodic motion investigated is orbitally stable if the signs of the coefficient h40 and of the coef- 
ficient of n: in the normalized Hamiltonian are the same, and unstable if these signs are opposite [6]. 

Using the identities which relate elliptic functions [3], their evenness and oddness properties, and 
employing integration by parts, the expression for the coefficients h40 can be represented in the following 
form 

/, 
40 

= WE-K)* 
24~~ 

(9(cn* u) - 4(cn6 u) - 27(cn” u)) 

where (cn”u) is the average value of the function cn”‘u over u during its period. 
But when kl = &!I2 we have K = 1.85407 and E = 1.35064, while 

(cn* U) = 0.45695, (cn” u) = 0.27417, (cn” u) = 0.21324 

Hence, h40 = -0.0049 < 0, and consequently, oscillations of amplitude equal to 7r/2 are orbitally stable. 
The proof of Theorem 1 on the stability of plane oscillations and rotations of a Kovalevskaya top 

around an axis of dynamic symmetry is therefore concluded. 

Remark. In the Kovalevskaya case there are also plane oscillations and rotations of the body about the Qy 
axis, lying in the equatorial plane of the ellipsoid of inertia for the fixed point 0. Here the Oy axis occupies a 
fixed horizontal position, while the Ox axis, on which the centre of gravity of the body lies, and the axis of dynamic 
symmetry Oz move in a fixed vertical plane passing through the point 0. Research showed that these conclusions 
regarding the stability of these motions are completely analogous to the conclusions which have been reached 
above when analysing the stability of oscillations and rotations about an axis of dynamic symmetry: rotations and 
oscillations with amplitude exceed 7r/2 are orbitally unstable, while oscillations with amplitudes no greater than 
n/2 are orbitally stable. Note that the stability of oscillations with amplitude less than n/2 was proved previously 
in [7]. 
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